Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.04.16.20067728

RESUMEN

Background: The role of aerosols in the transmission of SARS-CoV-2 remains debated. We analysed an outbreak involving three non-associated families in Restaurant X in Guangzhou, China, and assessed the possibility of aerosol transmission of SARS-CoV-2 and characterize the associated environmental conditions. Methods: We collected epidemiological data, obtained a video record and a patron seating-arrangement from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the suspected index patient. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer decay method. Results: Three families (A, B, C), 10 members of which were subsequently found to have been infected with SARS-CoV-2 at this time, or previously, ate lunch at Restaurant X on Chinese New Year's Eve (January 24, 2020) at three neighboring tables. Subsequently, three members of family B and two members of family C became infected with SARS-CoV-2, whereas none of the waiters or 68 patrons at the remaining 15 tables became infected. During this occasion, the ventilation rate was 0.75-1.04 L/s per person. No close contact or fomite contact was observed, aside from back-to-back sitting by some patrons. Our results show that the infection distribution is consistent with a spread pattern representative of exhaled virus-laden aerosols. Conclusions: Aerosol transmission of SARS-CoV-2 due to poor ventilation may explain the community spread of COVID-19.


Asunto(s)
COVID-19
2.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.04.06.20055228

RESUMEN

The exact transmission route of many respiratory infectious diseases remains a subject for debate to date. The relative contribution ratio of each transmission route is largely undetermined, which is affected by environmental conditions, human behavior, the host and the microorganism. In this study, a detailed mathematical model is developed to investigate the relative contributions of different transmission routes to a multi-route transmitted respiratory infection. It is illustrated that all transmission routes can dominate the total transmission risk under different scenarios. Influential parameters considered include dose-response rate of different routes, droplet governing size that determines virus content in droplets, exposure distance, and virus dose transported to the hand of infector. Our multi-route transmission model provides a comprehensive but straightforward method to evaluate the transmission efficiency of different transmission routes of respiratory diseases and provides a basis for predicting the impact of individual level intervention methods such as increasing close-contact distance and wearing protective masks.


Asunto(s)
Enfermedades Respiratorias , Infecciones del Sistema Respiratorio , Enfermedades Transmisibles
3.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.03.16.20037291

RESUMEN

A susceptible person experiences the highest exposure risk of respiratory infection when he or she is in close proximity with an infected person. The large droplet route has been commonly believed to be dominant for most respiratory infections since the early 20th century, and the associated droplet precaution is widely known and practiced in hospitals and in the community. The mechanism of exposure to droplets expired at close contact, however, remains surprisingly unexplored. In this study, the exposure to exhaled droplets during close contact (< 2 m) via both the short-range airborne and large droplet sub-routes is studied using a simple mathematical model of expired flows and droplet dispersion/deposition/inhalation, which enables the calculation of exposure due to both deposition and inhalation. The short-range airborne route is found to dominate at most distances studied during both talking and coughing. The large droplet route only dominates when the droplets are larger than 100 m and when the subjects are within 0.2 m while talking or 0.5 m while coughing. The smaller the exhaled droplets, the more important the short-range airborne route. The large droplet route contributes less than 10% of exposure when the droplets are smaller than 50 m and when the subjects are more than 0.3 m apart, even while coughing.


Asunto(s)
Infecciones del Sistema Respiratorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA